The behaviour of technetium during microbial reduction in amended soils from Dounreay, UK.

نویسندگان

  • James D C Begg
  • Ian T Burke
  • Katherine Morris
چکیده

Radioactive technetium-99 forms during nuclear fission and has been found as a contaminant at sites where nuclear wastes have been processed or stored. Here we describe results from microcosm experiments containing soil samples representative of the UKAEA site at Dounreay to examine the effect of varying solution chemistry on the fate of technetium during microbial reduction. Analysis of a suite of stable element redox indicators demonstrated that microbial activity occurred in a range of microcosm experiments including unamended Dounreay sediments, carbonate buffered sediments, and microcosms amended with ethylenediaminetetraacetic acid (EDTA) a complexing ligand used in nuclear fuel cycle operations. During the development of anoxia mediated by indigenous microbial populations, TcO4- was removed from solution in experiments. In all cases, the removal of TcO4- from solution occurred during active microbial Fe(III)-reduction when Fe(II) was growing into the microcosms. Tc removal was most likely via reduction of TcO4- to poorly soluble Tc(IV) which is retained on the sediments. The potential stability of Tc associated with the soil to remobilisation via complexation with EDTA was examined as reduced Tc-labelled sediments were contacted with a de-oxygenated EDTA solution. No remobilisation of Tc(IV) in the presence of EDTA was observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sorption, degradation and leaching of pesticides in soils amended with organic matter: A review

The use of pesticides in modern agriculture is unavoidable because they are required to control weeds. Pesticides are poisonous; hence, they are dangerous if misused. Understanding the fate of pesticides will be useful to use them safely. Therefore, contaminations of water and soil resources could be avoided. The fates of pesticides in soils are influenced by their sorption, decomposition and m...

متن کامل

روند تولید 2CO و تغییر کربن بیومس میکروبی در خاک‌های تیمار شده با کود اوره و مرغی

The addition of organic and inorganic substrates to calcareous soils low in organic matter and nitrogen contents may change soil microbial biomass and activity. In order to investigate the effect of chemical and organic fertilizers on soil CO2 production and microbial biomass C, a field experiment was conducted under maize cultivation. The experimental design was split-plot arranged in randomiz...

متن کامل

Evaluation of cement dust effects on soil microbial biomass and chlorophyll content of Triticum aestivum L. and Hordeum vulgare L.

ABSTRACT: Overall plant growth and microbial biomass can be effected by dust accumulation. The chloroform fumigation-extraction method was used to evaluating the effect of cement dust pollution emitted from Kurdistan cement factory on soil microbial biomass carbon. Chlorophyll content (a, b and total) of plants species was measured in different distance from cement factory. Mic...

متن کامل

Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two (13)C-labeled FOMs with contrasting n...

متن کامل

Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil

Nitrous oxide (N2O) is a potent greenhouse gas that is produced during microbial nitrogen transformation processes such as nitrification and denitrification. Soils represent the largest sources of N2O emissions with nitrogen fertilizer application being the main driver of rising atmospheric N2O concentrations. Soil biochar amendment has been proposed as a promising tool to mitigate N2O emission...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Science of the total environment

دوره 373 1  شماره 

صفحات  -

تاریخ انتشار 2007